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A Lie algebraic approach to Novikov algebras
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Abstract

Novikov algebras were introduced in connection with Poisson brackets of hydrodynamic type and
Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is
a Lie algebra. Thus it is useful to relate the study of Novikov algebras to the theory of Lie algebras.
In this paper, we will try to realize Novikov algebras through a Lie algebraic approach. Such a
realization could be important in physics and geometry. We find that all transitive Novikov algebras
in dimension≤3 can be realized as the Novikov algebras obtained through Lie algebras and their
compatible linear (global) deformations.
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1. Introduction

Hamiltonian operators have close relations with certain algebraic structures[1–8].
Gel’fand and Diki[1,2] introduced a formal variational calculus and found certain interest-
ing Poisson structures when they studied Hamiltonian systems related to certain nonlinear
partial differential equations, such as KdV equations. In Ref.[3], more connections be-
tween Hamiltonian operators and certain algebraic structures were found. Dubrovin et al.
[4–6] studied similar Poisson structures from another point of view. One of the algebraic
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structures appearing in Refs.[3,6], which is called a “Novikov algebra” by Osborn and Xu
[9–13], was introduced in connection with Poisson brackets of hydrodynamic type:

{ui(x), uj (y)} = gij(u(x))δ′(x − y) +
N∑

k=1

uk
xb

ij
k (u(x))δ(x − y). (1.1)

A Novikov algebraA is a vector space over a fieldF with a bilinear product(x, y) → xy
satisfying

(x1, x2, x3) = (x2, x1, x3) (1.2)

and

(x1x2)x3 = (x1x3)x2 (1.3)

for x1, x2, x3 ∈ A, where

(x1, x2, x3) = (x1x2)x3 − x1(x2x3). (1.4)

Novikov algebras are a special class of left-symmetric algebras which only satisfyEq. (1.2).
Left-symmetric algebras are a class of non-associative algebras arising from the study of
affine manifolds, affine structures and convex homogeneous cones[14–17].

The commutator of a Novikov algebra (or a left-symmetric algebra)A

[x, y] = xy − yx (1.5)

defines a (sub-adjacent) Lie algebraG = G(A). LetLx, Rx denote the left and right multipli-
cation, respectively, i.e.Lx(y) = xy, Rx(y) = yx ∀ x, y ∈ A. Then for a Novikov algebra,
the left multiplication operators form a Lie algebra and the right multiplication operators
are commutative.

Zel’manov[18] gave a fundamental structure theory of finite-dimensional Novikov al-
gebras over an algebraically closed field with characteristic 0. A Novikov algebra is called
right-nilpotent or transitive if everyRx is nilpotent. Then byEq. (1.3), a finite-dimensional
Novikov algebraA contains the (unique) largest transitive idealN(A) (is called the radical
of A) and the quotient algebraA/N(A) is a direct sum of fields. The transitivity corresponds
to the completeness of the affine manifolds in geometry[14,15].

Due to the non-associativity, there is not a suitable representation theory for Novikov
algebras. In particular, it is quite difficult to study the non-associative Novikov algebras
[19]. Therefore, to find certain realization of Novikov algebras can be regarded as the first
step. Here, the so-called realization means that we should use some well-known structures to
realize Novikov algebras. The first important class of Novikov algebras are given through the
commutative associative algebras as follows[20,21]. Let(A, ·)be a commutative associative
algebra, andD be its derivation. Then the new product

a ∗x b = a · Db + x · a · b (1.6)

makes(A, ∗x) to become a Novikov algebra forx = 0 by Gel’fand[3], for x ∈ F by
Filipov [22] and for a fixed elementx ∈ A by Xu [13]. In Ref. [20], we show that the
algebra(A, ∗) = (A, ∗0) given by Gel’fand is transitive. We also construct a deformation
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theory and the Novikov algebras given by Filipov and Xu are the special compatible linear
(global) deformations of ones given by Gel’fand. Moreover, we prove that all transitive
Novikov algebras in dimension≤3 can be realized as the algebras defined by Gel’fand and
their compatible linear (global) deformations. We conjecture that this conclusion can be
extended to higher dimensions. We also extend such a realization theory to the non-transitive
Novikov algebras[21]. Such a realization theory has been used to discuss the bilinear forms
on Novikov algebras[23] and the derivations of Novikov algebras[24].

However, it is a little insufficient for such a realization, in particular when we discuss
some properties of Novikov algebras related to their sub-adjacent Lie algebras. The relation
between Novikov algebras and Lie algebras is the key to study the geometry of Novikov
algebras which obviously plays an important role in the theory of Novikov algebras. And
certain application of Novikov algebras in physics is also given through Lie algebras[6].
But, it is quite a difference between commutative associative algebras and Lie algebras.
On the other hand, Lie algebras are a class of non-associative algebras which have been
studied for a long time. Any Lie algebraic approach to realize Novikov algebras will be
useful to understand the geometry and the physics related to Novikov algebras and may be
much closer to the non-associativity of Novikov algebras. We extend the idea of Gel’fand as
follows. Let(A, [, ]) be a Lie algebra,f be a linear transformation on it. Then by choosing
f suitably, we can define a Novikov algebra as

x ∗ y = [f (x), y] ∀ x, y ∈ A. (1.7)

In this paper, we commence to study such a realization. The paper is organized as follows.
In Section 2, we study the so-called Novikov interior derivation algebras, which are a
class of Novikov algebras realized byEq. (1.7)with an additional condition that the Lie
algebras are just their sub-adjacent Lie algebras. These Novikov algebras have an interesting
geometric background. InSection 3, the article to be self-contained, we briefly introduce the
deformation theory of Novikov algebras given in Ref.[20], and we give the realization of
all transitive Novikov algebras in dimensions 2 and 3 through the Lie algebraic approach.
In Section 4, we briefly discuss another Lie algebraic approach to Novikov algebras. In
Section 5, we give some conclusions based on the discussion in the previous sections.

2. Novikov interior derivation algebras

Let A be a Lie algebra andf be a linear transformation on it. ThenEq. (1.7)defines a
Novikov algebra if and only iff satisfies

f ([f (x), y] + [x, f (y)]) − [f (x), f (y)] ∈ C(A), (2.1)

[f ([f (x), y]), z] = [f ([f (x), z]), y] (2.2)

for anyx, y, z ∈ A andC(A) = {a ∈ A|[a, b] = 0∀ b ∈ A} is the center of the Lie algebra
A. In fact,Eq. (2.1)corresponds toEq. (1.2)andEq. (2.2)follows fromEq. (1.3).

Obviously, whenA is Abelian orf is zero, the resultant Novikov algebra is the trivial
Novikov algebra, i.e. all products are zero. Thus, we mainly discuss the cases whenA is
not Abelian andf is not zero.
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In particular, there are a special class of Novikov algebras which are very interesting and
important. The sub-adjacent Lie algebra of the Novikov algebra defined as above is just the
former Lie algebra. That means, besidesEqs. (2.1) and (2.2), f should satisfy an additional
condition:

[x, y] = [f (x), y] + [x, f (y)] ∀ x, y ∈ A. (2.3)

Thus,Eq. (2.1)becomes

f ([x, y]) − [f (x), f (y)] ∈ C(A). (2.4)

Furthermore, fromEqs. (2.3) and (2.4)and the Jacobi identity, we can obtain

[f ([f (y), x]), z] = [f ([f (z), y]), x] ∀ x, y, z ∈ A. (2.5)

Thus, combiningEqs. (2.2), (2.3) and (2.5)together, we can obtain

[f ([f (y), x]), z] − [f ([f (x), y]), z] = [f ([x, y]), z] = 0 ∀ x, y, z ∈ A, (2.6)

i.e.:

f ([x, y]) ∈ C(A). (2.7)

ThroughEq. (2.4), we have

[f (x), f (y)] ∈ C(A). (2.8)

Moreover, the above process is sufficient and necessary. It is easy to find thatEqs. (2.1)–(2.3)
hold if and only ifEq. (2.3)andEqs. (2.7) and (2.8)hold, i.e.f satisfies

[x, y] = [f (x), y] + [x, f (y)], f ([x, y]) ∈ C(A),

[f (x), f (y)] ∈ C(A) ∀ x, y ∈ A. (2.9)

The left multiplication operatorLx for above Novikov algebra is just the linear transforma-
tion adf (x) for its sub-adjacent Lie algebra, where ad is the adjoint operator which satisfies
adx(y) = [x, y] ∀ x, y ∈ A. Therefore, any Novikov algebraA defined byEq. (1.7)with
f satisfyingEqs. (2.1)–(2.3)(i.e.Eq. (2.9)) has the property: the left multiplication opera-
tor Lx or the right multiplication operatorRx = adx − Lx is an interior derivation of its
sub-adjacent Lie algebra. On the contrary, for a Novikov algebra with such a property, it is
easy to show there exists a linear transformationf such thatLx = adf (x) andf satisfies
Eq. (2.9). Such a Novikov algebra is called a Novikov interior derivation algebra.

In fact, the above structure was first studied in Ref.[25] for a left-symmetric algebra.
There is a good geometry behind it. LetG be a Lie group with Lie algebraG, and let
Int(G) denote the group of interior automorphisms of the Lie algebraG. The local interior
automorphism structure ofG is the principal fiber bundle of frames ofG obtained by the
extension to Int(G) of a left-invariant parallelism ofG. Its fibers are unique up to a right
translation inG’s frame bundleR(G). Then the interior derivation algebras just correspond
to the left-invariant locally flat connections (defined by the algebras themselves) adapted
to the structures defined above. Hence the relationship between these interior derivation
algebras and their sub-adjacent Lie algebras can ensure any consequences for the group
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structure. For more details see Ref.[25]. We also discuss the so-called Novikov derivation
algebras which are the Novikov algebra structures adapted to the general automorphism
structure of a Lie group in Ref.[26].

FromEq. (2.9)directly or through the discussion in Ref.[25], we can obtain the following
properties of Novikov interior derivation algebras:

(a) The sub-adjacent Lie algebra of a Novikov interior derivation algebraA can be de-
composed into a direct sum of three vector subspacesA1, A2, A3, which satisfy the
following conditions:

[A1, A1] = [A2, A2] = [A1, A3] = [A2, A3]

= 0, [A1, A2] ⊂ A1 + C(A), [A3, A3] ⊂ C(A). (2.10)

In particular,A must be 2-solvable, i.e. the derived Lie idealD(A) = [A, A] is Abelian.
(b) Any Novikov interior derivation algebra is transitive.
(c) Any Novikov interior derivation algebraA is associative if and only if its sub-adjacent

Lie algebraA is 2-nilpotent, i.e. the derived Lie idealD(A) is in the centerC(A).
(d) There exists a Novikov interior derivation product on any 2-solvable Lie algebra with

trivial center. In fact, from the discussion in Ref.[25], such a Lie algebraA has a
decomposition:

A = D(A) ⊕ C, (2.11)

whereC is an Abelian Cartan subalgebra ofA. Thus the Novikov interior derivation
product onA can be defined by

LaD
= 0, LaC

= ad(aC), (2.12)

whereaD ∈ D(A), aC ∈ C.
(e) There are certain kind of 2-solvable Lie algebras with trivial center which have the

property that it is sub-adjacent to a unique Novikov interior derivation structure. Such
an example can be obtained from Ref.[25]. LetA be ann-dimensional Lie algebra with
the product

[ei, ej ] = 0, i, j ≥ 2, [e1, ei ] = λiei,

i ≥ 2, λi �= 0, theλi being pairwise distinct. (2.13)

The (unique) Novikov interior derivation structure is given by

e1e1 = 0, e1ei = λiei, eiej = 0, i, j ≥ 2. (2.14)

At the end of this section, based on the classification of Novikov algebras in dimension
≤3 given in Ref.[19], we give the classification of Novikov interior derivation algebras
in dimension≤3 and their corresponding realization as follows. Recall that the (form)
characteristic matrix of a Novikov algebra is defined as

A =



∑n

k=1 ck
11ek · · · ∑n

k=1 ck
1nek

· · · · · · · · ·∑n
k=1 ck

n1ek · · · ∑n
k=1 ck

nnek


 , (2.15)
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where{ei} is a basis ofA andeiej = ∑n
k=1 ck

ijek.

• One-dimensional Novikov interior derivation algebra.

Lie algebra is Abelian⇒ trivial Novikov algebra.

• Two-dimensional Novikov interior derivation algebras.

Lie algebra is Abelian⇒ trivial Novikov algebra,

Lie algebra〈e1, e2|[e1, e2] = e1〉 and{
f (e1) = 0

f (e2) = e2
⇒ Novikov algebra

(
0 0

−e1 0

)
.

• Three-dimensional Novikov interior derivation algebras.

Lie algebra is Abelian⇒ trivial Novikov algebra,

Lie algebra e1, e2, e3|




[e3, e2] = e1

[e1, e2] = 0

[e1, e3] = 0
and




f (e1) = 0

f (e2) = −e2

f (e3) = −e3

⇒ Novikov algebra




0 0 0

0 0 e1

0 −e1 0


 ,

Lie algebra e1, e2, e3|




[e3, e2] = e1

[e1, e2] = 0

[e1, e3] = 0
and




f (e1) = 0

f (e2) = e3 − e2

f (e3) = −le2 − e3

⇒ Novikov algebra




0 0 0

0 e1 e1

0 −e1 le1


 ,

Lie algebra e1, e2, e3|




[e3, e2] = e2

[e1, e2] = 0

[e1, e3] = 0
and




f (e1) = 0

f (e2) = 0

f (e3) = e3

⇒ Novikov algebra




0 0 0

0 0 0

0 e2 0


 ,
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Lie algebra e1, e2, e3|




[e3, e2] = le2

[e1, e2] = 0

[e1, e3] = −e1

, |l| ≤ 1, l �= 0 and




f (e1) = 0

f (e2) = 0

f (e3) = e3

⇒ Novikov algebra




0 0 0

0 0 0

e1 le2 0


 , |l| ≤ 1, l �= 0,

Lie algebra e1, e2, e3|




[e3, e2] = e1 + e2

[e1, e2] = 0

[e1, e3] = −e1

and




f (e1) = 0

f (e2) = 0

f (e3) = e3

⇒ Novikov algebra




0 0 0

0 0 0

e1 e1 + e2 0


 .

3. The deformation theory of Novikov algebras and the realization of transitive
Novikov algebras in dimensions 2 and 3

At first, the article to be self-contained, we briefly introduce the deformation theory of
Novikov algebras given in Ref.[20]. Let(A, ∗) be a Novikov algebra, andgp : A×A → A

be a bilinear product defined by

gq(a, b) = a ∗ b + qG1(a, b) + q2G2(a, b) + q3G3(a, b) + · · · , (3.1)

whereGi are bilinear products withG0(a, b) = a ∗ b. We call(Aq, gq) a deformation of
(A, ∗) if (Aq, gq) is a family of Novikov algebras. In particular, we callG1 a linear (global)
deformation if the deformation is given by

gq(a, b) = a ∗ b + qG1(a, b), (3.2)

i.e.G2 = G3 = · · · = 0. G1 is a linear (global) deformation if and only if

G1(G1(a, b), c)−G1(a, G1(b, c))−G1(G1(b, a), c)+G1(b, G1(a, c)) = 0, (3.3)

G1(G1(a, b), c) = G1(G1(a, c), b), (3.4)

G1(a, b ∗ c) − G1(a ∗ b, c) + G1(b ∗ a, c) − G1(b, a ∗ c) + a ∗ G1(b, c)

−G1(a, b) ∗ c + G1(b, a) ∗ c − b ∗ G1(a, c) = 0, (3.5)

G1(a, b) ∗ c − G1(a, c) ∗ b + G1(a ∗ b, c) − G1(a ∗ c, b) = 0. (3.6)

Moreover,G1 is called a compatible linear (global) deformation ifG1 is symmetric. Any
Novikov algebra and its compatible linear (global) deformations have the same sub-adjacent
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Lie algebra. A linear (global) deformation is called special if the elements in the family of
Novikov algebras(Aq, gq) defined byEq. (3.2)are mutually isomorphic forq �= 0.

Next, by direct computation, we can show that any transitive Novikov algebra in dimen-
sions 2 or 3 can be realized as the Novikov algebra defined byEq. (1.7)with f satisfying
Eqs. (2.1) and (2.2)or its (special) compatible linear (global) deformation. Except the
Novikov interior derivation algebras given inSection 2, there are the following transitive
Novikov algebras which can be obtained from some non-Abelian Lie algebras in dimensions
2 or 3 and some suitablef :

Lie algebra〈e1, e2|[e1, e2] = e1〉 and{
f (e1) = 0

f (e2) = e1
⇒ Novikov algebra

(
0 0

0 e1

)
,

Lie algebra e1, e2, e3|




[e3, e2] = e1

[e1, e2] = 0

[e1, e3] = 0
and




f (e1) = 0

f (e2) = 0

f (e3) = −e2

⇒ Novikov algebra




0 0 0

0 0 0

0 0 e1


 ,

Lie algebra e1, e2, e3|




[e3, e2] = e1

[e1, e2] = 0

[e1, e3] = 0
and




f (e1) = 0

f (e2) = e3

f (e3) = −e2

⇒ Novikov algebra




0 0 0

0 e1 0

0 0 e1


 .

In fact, the above Novikov algebras also can be regarded as the compatible linear (global)
deformations of the trivial Novikov algebras. However, we usually skip these deformations
(they are regarded as the trivial cases) since every Novikov algebra can be regarded as a
linear (global) deformation of a certain trivial Novikov algebra[20].

According to the classification of transitive Novikov algebras in dimension≤3[19], there
are the following algebras which cannot be realized throughEq. (1.7)directly:

(1) Novikov algebra


0 0 0

0 0 e1

0 e1 e2
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is a special compatible linear (global) deformation of Novikov algebra
 0 0 0

0 0 e1

0 e1 0





isomorphic to


 0 0 0

0 e1 0
0 0 e1






with

G1 =

 0 0 0

0 0 0
0 0 e2


 .

(2) Novikov algebra
 0 0 0

0 0 e1

0 le1 e2


 , l �= 1

is a special compatible linear (global) deformation of Novikov algebra
 0 0 0

0 0 e1

0 le1 0


 , l �= 1


isomorphic to




0 0 0
0 e1 e1

0 −e1 − (l + 1)2

(l − 1)2
e1






with

G1 =

 0 0 0

0 0 0
0 0 e2


 .

(3) Novikov algebra
 0 0 0

0 0 0
0 e1 e2




is a special compatible linear (global) deformation of Novikov algebra
 0 0 0

0 0 0
0 e1 0
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isomorphic to


 0 0 0

0 e1 e1

0 −e1 −e1






with

G1 =

 0 0 0

0 0 0
0 0 e2


 .

(4) Novikov algebra


 0 0 0

0 0
0 e2 e1




is a special compatible linear (global) deformation of Novikov algebra


 0 0 0

0 0 0
0 e2 0




with

G1 =

 0 0 0

0 0 0
0 0 e1


 .

(5) Novikov algebra


0 0 0
0 e1 0

e1
1
2e2 0




is a special compatible linear (global) deformation of Novikov algebra


0 0 0
0 0 0

e1
1
2e2 0




with

G1 =

 0 0 0

0 e1 0
0 0 0


 .
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4. Another Lie algebraic approach

Obviously we also can define a Novikov algebra through a Lie algebra by

x ∗ y = [x, g(y)] ∀ x, y ∈ A, (4.1)

where(A, [, ]) is a Lie algebra andg is a linear transformation onA satisfying

[[x, g(y)] + [g(x), y], g(z)] + [y, g([x, g(z)])] − [x, g([y, g(z)])] = 0, (4.2)

[g(x), g(y)] ∈ C(A) (4.3)

for anyx, y, z ∈ A.
WhenA is a Novikov interior derivation algebra, the realization given byEq. (1.7)coin-

cides with that given byEq. (4.1). In fact, because adx = Lx −Rx andLx = adf (x), Rx =
−adg(x), the relation betweenf andg is given by

adg(x) = ad(x − f (x)). (4.4)

This fact also can be seen fromEq. (2.9)which can be shown to be equivalent toEqs. (4.2),
(4.3) and (2.3).

Although in general,Eqs. (4.2) and (4.3)are not equivalent toEqs. (2.1) and (2.2), we
can still find that all transitive Novikov algebras in dimension≤3 can be realized as the
Novikov algebras defined throughEq. (4.1)and their (special) compatible linear (global)
deformations. From the discussion inSection 3, we only need discuss the following cases:

Lie algebra〈e1, e2|[e1, e2] = e1〉 and{
g(e1) = 0

g(e2) = −e1
⇒ Novikov algebra

(
0 0

0 e1

)
,

Lie algebra e1, e2, e3|




[e3, e2] = e1

[e1, e2] = 0

[e1, e3] = 0
and




g(e1) = 0

g(e2) = 0

g(e3) = e2

⇒ Novikov algebra




0 0 0

0 0 0

0 0 e1


 ,

Lie algebra e1, e2, e3|




[e3, e2] = e1

[e1, e2] = 0

[e1, e3] = 0
and




g(e1) = 0

g(e2) = −e3

g(e3) = e2

⇒ Novikov algebra




0 0 0

0 e1 0

0 0 e1


 .
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5. Conclusions and discussion

From the discussion in the previous sections, we have the following conclusions:

(a) All transitive Novikov algebras in dimensions 2 and 3 can be realized as the Novikov
algebras defined byEq. (1.7)with f satisfyingEqs. (2.1) and (2.2)(or byEq. (4.1)with
g satisfyingEqs. (4.2) and (4.3)) and their compatible linear (global) deformations.

(b) In fact, we have seen that the Novikov interior derivation algebras play an important role
in the above realization theory. In particular, all non-commutative transitive Novikov
algebras in dimensions 2 and 3 can be realized as Novikov interior derivation algebras
and their compatible linear (global) deformations. However, such a conclusion cannot
extend to higher dimensions, even for 2-solvable Lie algebras in dimension 4. For
example, we can show that there does not exist any Novikov interior derivation algebra
structure on the 4-dimensional nilpotent Lie algebra[27] given by

〈e1, e2, e2, e4|[e2, e3] = e1, [e3, e4] = e2, other products are zero〉.
(c) We would like to point out that, unlike the realization theory given through commu-

tative associative algebras[20,21], the Lie algebraic approach is less useful for the
non-transitive Novikov algebras. Even in dimension 2[19], there are some non-transitive
Novikov algebras which cannot be realized as the Novikov algebras obtained through
Eq. (1.7)(or Eq. (4.1)) or their compatible linear (global) deformations.

Although there are some limitations for such a Lie algebraic approach to Novikov alge-
bras, it will still be interesting to apply it to physics and geometry.
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